Berry ’ s phase for compact Lie groups
نویسنده
چکیده
The Lie group adiabatic evolution determined by a Lie algebra parameter dependent Hamiltonian is considered. It is demonstrated that in the case when the parameter space of the Hamiltonian is a homogeneous Kähler manifold its fundamental Kähler potentials completely determine Berry geometrical phase factor. Explicit expressions for Berry vector potentials (Berry connections) and Berry curvatures are obtained using the complex parametrization of the Hamiltonian parameter space. A general approach is exemplified by the Lie algebra Hamiltonians corresponding to SU (2) and SU (3) evolution groups.
منابع مشابه
Lattice of full soft Lie algebra
In this paper, we study the relation between the soft sets and soft Lie algebras with the lattice theory. We introduce the concepts of the lattice of soft sets, full soft sets and soft Lie algebras and next, we verify some properties of them. We prove that the lattice of the soft sets on a fixed parameter set is isomorphic to the power set of a ...
متن کاملA Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کاملBerry phase for a particle in an infinite spherical potential well with moving wall
In this paper we calculate the Berry phase for a wave function of a particle in an infinite spherical potential well with adiabatically varying. In order to do this, we need the solutions of the corresponding Schrödinger equation with a time dependent Hamiltonian. Here, we obtain these solutions for the first time. In addition, we calculate the Berry phase in one dimensional case for an infinit...
متن کاملThe topology of a semisimple Lie group is essentially unique
We study locally compact group topologies on simple and semisimple Lie groups. We show that the Lie group topology on such a group S is very rigid: every “abstract” isomorphism between S and a locally compact and σ -compact group Γ is automatically a homeomorphism, provided that S is absolutely simple. If S is complex, then noncontinuous field automorphisms of the complex numbers have to be con...
متن کاملBerezin quantization and unitary representations of Lie groups
In 1974, Berezin proposed a quantum theory for dynamical systems having a Kähler manifold as their phase space. The system states were represented by holomorphic functions on the manifold. For any homogeneous Kähler manifold, the Lie algebra of its group of motions may be represented either by holomorphic differential operators (“quantum theory”), or by functions on the manifold with Poisson br...
متن کامل